Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype.

نویسندگان

  • Chelsea M Kirschner
  • Daniel L Alge
  • Sarah T Gould
  • Kristi S Anseth
چکیده

Biophysical cues are widely recognized to influence cell phenotype. While this evidence was established using static substrates, there is growing interest in creating stimulus-responsive biomaterials that better recapitulate the dynamic extracellular matrix. Here, a clickable, photodegradable hydrogel substrate that allows the user to precisely control substrate elasticity and topography in situ is presented. The hydrogels are synthesized by reacting an 8-arm poly(ethylene glycol) alkyne with an azide-functionalized photodegradable crosslinker. The utility of this platform by exploiting its photoresponsive properties to modulate the phenotype of porcine aortic valvular interstitial cells (VICs) is demonstrated. First, VIC phenotype is monitored, in response to initial substratum modulus and static topographic cues. Higher modulus (E ≈ 15 kPa) substrates induce higher levels of activation (≈70% myofibroblasts) versus soft (E ≈ 3 kPa) substrates (≈20% myofibroblasts). Microtopographies that induce VIC alignment and elongation on low modulus substrates also stimulate activation. Finally, VIC phenotype is monitored in response to sequential in situ manipulations. The results illustrate that VIC activation on stiff surfaces (≈70% myofibroblasts) can be partially reversed by reducing surface modulus (≈30% myofibroblats) and subsequently re-activated by anisotropic topographies (≈60% myofibroblasts). Such dynamic substrates afford unique opportunities to decipher the complex role of matrix cues on the plasticity of VIC activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Cell Picking in Photodegradable Hydrogels Based on Cellular Morphology in 3d Culture Environment

We present a new methodology for optical cell picking in 3D culture environment, because biological cells often show phenotype alterations by the interactions with pericellular matrix in 3D culture. In this study, we encapsulated cells in photodegradable hydrogels by mixing cell-containing gelatin solution with crosslinker, NHS-PC-4armPEG. The minimum resolution of photodegradation was estimate...

متن کامل

Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.

Three dimensional (3D) hydrogel platforms are powerful tools, providing controllable, physiologically relevant microenvironments that could aid in understanding how various environmental factors direct valvular interstitial cell (VIC) phenotype. Continuous activation of VICs and their transformation from quiescent fibroblast to activated myofibroblast phenotype is considered to be an initiating...

متن کامل

Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels

Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cul...

متن کامل

Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiatio...

متن کامل

Fabrication of Biomimetic 3d Liver Tissue Using Photodegradable Hydrogels and Perfusion Culture in a Microfluidic Device

This paper reports a novel technique to fabricate perfusable 3D liver tissue in a microfluidic device using photodegradable hydrogels prepared with gelatin. Also, we performed the perfusion culture of human hepatocellular carcinoma (HepG2) cells encapsulated in the patterned hydrogels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced healthcare materials

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2014